

Function Table

$\overline{\text { OE }}$	CK	$\overline{\text { LD }}$	$\overline{\text { UD }}$	$\overline{\text { CBI }}$	D7-DO	Q7-Q0	Operation
H	X	X	X	X	X	Z	HI-Z
L	\uparrow	L	X	X	D	D	LOAD
L	\uparrow	H	L	H	X	Q	HOLD
L	\uparrow	H	L	L	X	Q plus 1	INCREMENT
L	\uparrow	H	H	H	X	Q	HOLD
L	\uparrow	H	H	L	X	Q minus 1	DECREMENT

Absolute Maximum Ratings (Note 1)	Off-State Output Voltage	5.5 V	
Supply Voltage V_{Cc}	7 V	Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Input Voltage	5.5 V		

Operating Conditions

Symbol	Parameter		Military			Commercial			Units
			Min	Typ	Max	Min	Typ	Max	
V_{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
T_{A}	Operating Free-Air Temperature		-55		125 (Note 2)	0		75	${ }^{\circ} \mathrm{C}$
t_{w}	Width of Clock	Low	40			35	10		ns
		High	30			25			
t_{su}	Set Up Time		60			50			ns
$t_{\text {h }}$	Hold Time		0	-15		0	-15		

tional, but do not guarantee specific performance limits.
Note 2: Case Temperature

Electrical Characteristics

Over Operating Conditions

Symbol	Parameter		Test Conditions	Min	$\begin{gathered} \hline \text { Typ } \\ \text { (Note 4) } \\ \hline \end{gathered}$	Max	Units
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage					0.8	V
V_{IH}	High-Level Input Voltage			2			V
$\mathrm{V}_{\text {IC }}$	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$	$\mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.5	V
IL	Low-Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	$\mathrm{V}_{1}=0.4 \mathrm{~V}$			-0.25	mA
I_{IH}	High-Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	$\mathrm{V}_{1}=2.4 \mathrm{~V}$			25	$\mu \mathrm{A}$
${ }_{1}$	Maximum Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA
V_{OL}	Low-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \\ & \hline \end{aligned}$	MIL $\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$ COM $\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$			0.5	V
V_{OH}	High-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \\ & \hline \end{aligned}$	MIL $\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$ COM $\mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA}$	2.4			V
$\mathrm{I}_{\text {OzL }}$	Off-State Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OzH }}$		$\mathrm{V}_{1 \mathrm{H}}=2 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			100	$\mu \mathrm{A}$
l_{OS}	Output Short-Circuit Current (Note 3)	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	-30		-130	mA
I_{cc}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			120	180	mA

Note 3: No more than one output should be shorted at a time and duration of the short-circuit should not exceed one second
Note 4: All typical values are $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Switching Characteristics

Symbol	Parameter	Test Conditions(See Test Load/Waveforms)	Military			Commercial			Units
			Min	Typ	Max	Min	Typ	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{1}=200 \Omega \\ & \mathrm{R}_{2}=390 \Omega \end{aligned}$	10.5			12.5			MHz
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CBI}}$ to $\overline{\mathrm{CBO}}$ Delay			35	60		35	50	ns
$t_{\text {PD }}$	Clock to Q			20	35		20	30	ns
$t_{\text {PD }}$	Clock to CBO			55	95		55	80	ns
$\mathrm{t}_{\text {PZX }}$	Output Enable Delay			20	45		20	35	ns
$\mathrm{t}_{\mathrm{Px} \mathrm{z}}$	Output Disable Delay			20	45		20	35	ns

Logic Diagram

\square

Physical Dimensions inches (millimeters) unless otherwise noted

J24F (REV. H)
24-Pin Narrow Ceramic Dual-In-Line Package (J)
Order Number DM54LS469J or DM74LS469J
Package Number J24F

24-Pin Narrow Plastic Dual-In-Line Package (N)
Order Number DM74LS469N Package Number N24C

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

