

DM74LS469 8-Bit Up/Down Counter

General Description

The 'LS469 is an 8-bit synchronous up/down counter with parallel load and hold capability. Three function-select inputs ($\overline{\text{LD}}$, $\overline{\text{UD}}$, $\overline{\text{CBI}}$) provide one of four operations which occur synchronously on the rising edge of the clock (CK).

The LOAD operation loads the inputs (D_7-D_0) into the output register $(Q_7-Q_0).$ The HOLD operation holds the previous value regardless of clock transitions. The INCREMENT operation adds one to the output register when the carry-in input is TRUE $(\overline{CBI}$ =LOW), otherwise the operation is a HOLD. The carry-out (\overline{CBO}) is TRUE $(\overline{CBO}$ =LOW) when the output register (Q_7-Q_0) is all HIGHs, otherwise FALSE $(\overline{CBO}$ =HIGH). The DECREMENT operation subtracts one from the output register when the borrow-in input is TRUE $(\overline{CBI}$ =LOW), otherwise the operation is a HOLD. The borrow-out (\overline{CBO}) is TRUE $(\overline{CBO}$ =LOW) when the output register (Q_7-Q_0) is all LOWs, otherwise FALSE $(\overline{CBO}$ =HIGH)

The output register (Q_7-Q_0) is enabled when \overline{OE} is LOW, and disabled (HI-Z) when \overline{OE} is HIGH. The output drivers will sink the 24 mA required for many bus-interface standards. Two or more 'LS469 octal up/down counters may be cascaded to provide larger counters.

Features/Benefits

- 8-bit up/down counter for microprogram-counter, DMA controller and general-purpose counting applications
- 8 bits matches byte boundaries
- Bus-structured pinout
- 24-pin SKINNYDIP saves space
- 3-STATE outputs drive bus lines
- Low current PNP inputs reduce loading
- Expandable in 8-bit increments

Connection Diagram

Top View CARRY CARRY/ BORROW OUT **Q3** 23 20 19 Q2 Q3 Q4 CBI СВО 8-BIT CK COUNTER D5 D6 D7, D2 D3 D4

Order Number DM54LS469J, DM74LS469J or DM74LS469N See Package Number J24F or N24C

DATA

Standard Test Load

Function Table

ŌΕ	СК	LD	ŪD	СВІ	D7-D0	Q7-Q0	Operation	
Н	Х	Х	Х	Х	Х	Z	HI-Z	
L	1	L	Х	Х	D	D	LOAD	
L	1	Н	L	Н	X	Q	HOLD	
L	1	Н	L	L	Х	Q plus 1	INCREMENT	
L	1	Н	н	Н	Х	Q	HOLD	
L	1	Н	н	L	Х	Q minus 1	DECREMENT	

Absolute Maximum Ratings (Note 1)

Off-State Output Voltage Storage Temperature

5.5V -65°C to +150°C

Supply Voltage V_{CC} Input Voltage

7V 5.5V

Operating Conditions

Symbol	Parameter		Milita	ary	С	Units			
			Min	Тур	Max	Min	Тур	Max]
V _{CC}	Supply Voltage			5	5.5	4.75	5	5.25	V
T _A	Operating Free-Air Temperature		-55		125 (Note 2)	0		75	°C
t _W	Width of Clock	Low	40			35	10		ns
		High	30			25]
t _{SU}	Set Up Time	•	60			50			ns
t _h	Hold Time		0	-15		0	-15		

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.

Electrical Characteristics

Over Operating Conditions

Symbol	Parameter	Test Conditions			Min	Typ (Note 4)	Max	Units
V _{IL}	Low-Level Input Voltage						0.8	V
V _{IH}	High-Level Input Voltage				2			V
V _{IC}	Input Clamp Voltage	V _{CC} =MIN	I _I =-18 mA				-1.5	V
I _{IL}	Low-Level Input Current	V _{CC} =MAX	V _I =0.4V				-0.25	mA
I _{IH}	High-Level Input Current	V _{CC} =MAX	V _I =2.4V				25	μA
I _I	Maximum Input Current	V _{CC} =MAX	V _I =5.5V				1	mA
		V _{CC} =MIN	MIL	I _{OL} =12 mA				
V_{OL}	Low-Level Output Voltage	V _{IL} =0.8V					0.5	V
		V _{IH} =2V	COM	I _{OL} =24 mA	1			
		V _{CC} =MIN	MIL	I _{OH} =-2 mA				
V_{OH}	High-Level Output Voltage	V _{IL} =0.8V			2.4			V
		V _{IH} =2V	COM	I _{OH} =-3.2 mA	1			
l _{ozL}		V _{CC} =MAX		V _O =0.4V			-100	μΑ
	Off-State Output Current	V _{IL} =0.8V						
l _{ozh}		V _{IH} =2V		V _O =2.4V			100	μΑ
los	Output Short-Circuit Current (Note 3)	V _{CC} =5.0V		V _O =0V	-30		-130	mA
I _{cc}	Supply Current	V _{CC} =MAX				120	180	mA

Note 3: No more than one output should be shorted at a time and duration of the short-circuit should not exceed one second

Note 2: Case Temperature

Note 4: All typical values are V_{CC}=5V, T_A=25°C.

Switching CharacteristicsOver Operating Conditions

Symbol	Parameter	Test Conditions	Military			Commercial			Units
		(See Test Load/Waveforms)	Min	Тур	Max	Min	Тур	Max	
f _{MAX}	Maximum Clock		10.5			12.5			MHz
	Frequency								
t _{PD}	CBI to CBO Delay	C _L =50 pF		35	60		35	50	ns
t _{PD}	Clock to Q	$R_1 = 200\Omega$		20	35		20	30	ns
t _{PD}	Clock to CBO	$R_2 = 390\Omega$		55	95		55	80	ns
t _{PZX}	Output Enable Delay			20	45		20	35	ns
t _{PXZ}	Output Disable Delay			20	45		20	35	ns

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation Americas Customer Response Center

Tel: 1-888-522-5372

Fairchild Semiconductor

Europe
Fax: +49 (0) 1 80-530 85 86 Fax: +49 (0) 1 80-530 85 86

Email: europe.support@nsc.com

Deutsch Tel: +49 (0) 8 141-35-0

English Tel: +44 (0) 1 793-85-68-56

Italy Tel: +39 (0) 2 57 5631

Fairchild Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon

Hong Kong Tel: +852 2737-7200 Fax: +852 2314-0061

National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179

www.fairchildsemi.com