Revised April 2002

October 1987

CD4511BC BCD-to-7 Segment Latch/Decoder/Driver

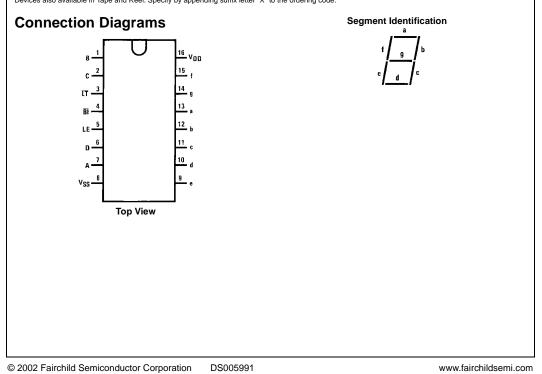
FAIRCHILD

SEMICONDUCTOR

CD4511BC BCD-to-7 Segment Latch/Decoder/Driver

General Description

The CD4511BC BCD-to-seven segment latch/decoder/ driver is constructed with complementary MOS (CMOS) enhancement mode devices and NPN bipolar output drivers in a single monolithic structure. The circuit provides the functions of a 4-bit storage latch, an 8421 BCD-to-seven segment decoder, and an output drive capability. Lamp test (LT), blanking (BI), and latch enable (LE) inputs are used to test the display, to turn-off or pulse modulate the brightness of the display, and to store a BCD code, respectively. It can be used with seven-segment light emitting diodes (LED), incandescent, fluorescent, gas discharge, or liquid crystal readouts either directly or indirectly.


Applications include instrument (e.g., counter, DVM, etc.) display driver, computer/calculator display driver, cockpit display driver, and various clock, watch, and timer uses.

Features

- Low logic circuit power dissipation
- High current sourcing outputs (up to 25 mA)
- Latch storage of code
- Blanking input
- Lamp test provision
- Readout blanking on all illegal input combinations
- Lamp intensity modulation capability
- Time share (multiplexing) facility
- Equivalent to Motorola MC14511

Ordering Code:

Order Number	Package Number	Package Description
CD4511BCWM	M16B	16-Lead Small Outline Intergrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
CD4511BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Devices also available	in Topo and Rool Specify	by appanding suffix latter "V" to the ordering and

This datasheet has been downloaded from http://www.digchip.com at this page

CD4511BC

Inputs						Outputs								
LE	BI	LT	D	С	в	Α	а	b	С	d	е	f	g	Display
Х	Х	0	Х	Х	Х	Х	1	1	1	1	1	1	1	В
Х	0	1	х	Х	Х	Х	0	0	0	0	0	0	0	
0	1	1	0	0	0	0	1	1	1	1	1	1	0	0
0	1	1	0	0	0	1	0	1	1	0	0	0	0	1
0	1	1	0	0	1	0	1	1	0	1	1	0	1	2
0	1	1	0	0	1	1	1	1	1	1	0	0	1	3
0	1	1	0	1	0	0	0	1	1	0	0	1	1	4
0	1	1	0	1	0	1	1	0	1	1	0	1	1	5
0	1	1	0	1	1	0	0	0	1	1	1	1	1	6
0	1	1	0	1	1	1	1	1	1	0	0	0	0	7
0	1	1	1	0	0	0	1	1	1	1	1	1	1	8
0	1	1	1	0	0	1	1	1	1	0	0	1	1	9
0	1	1	1	0	1	0	0	0	0	0	0	0	0	
0	1	1	1	0	1	1	0	0	0	0	0	0	0	
0	1	1	1	1	0	0	0	0	0	0	0	0	0	
0	1	1	1	1	0	1	0	0	0	0	0	0	0	
0	1	1	1	1	1	0	0	0	0	0	0	0	0	
0	1	1	1	1	1	1	0	0	0	0	0	0	0	
1	1	1	х	Х	Х	Х				*				*

X = Don't Care *Depends upon the BCD code applied during the 0 to 1 transition of LE.

Display

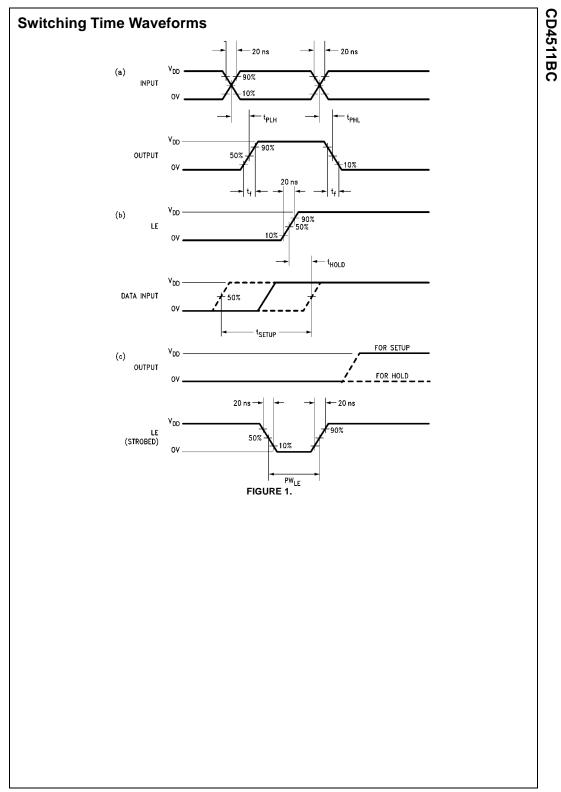
Absolute Maximum Ratings(Note 1)

DC Supply Voltage (V/	-0.5V to +18V
DC Supply Voltage (V _{DD})	-0.5V 10 +16V
Input Voltage (V _{IN})	–0.5V to V _{DD} +0.5V
Storage Temperature Range (T _S)	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C

Recommended Operating Conditions

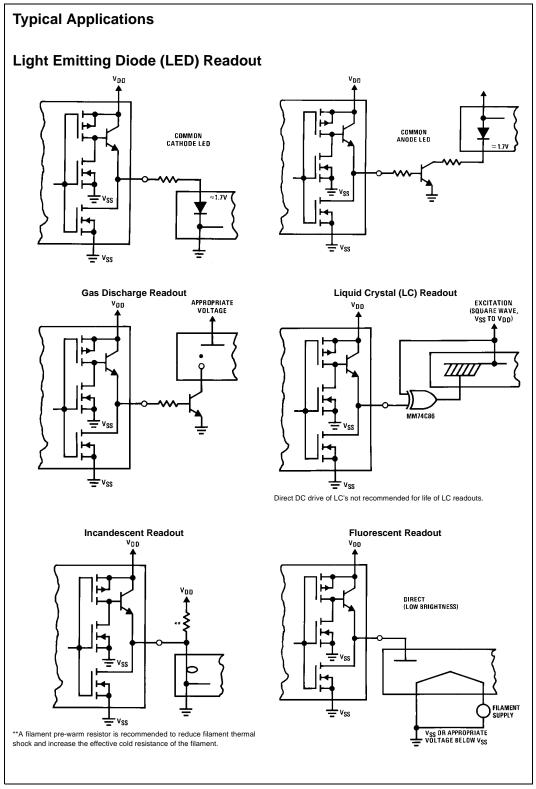
DC Supply Voltage (V _{DD})	3V to 15V
Input Voltage (V _{IN})	0V to V _{DD}
Operating Temperature Range (T_A)	–55°C to +125°C

CD4511BC

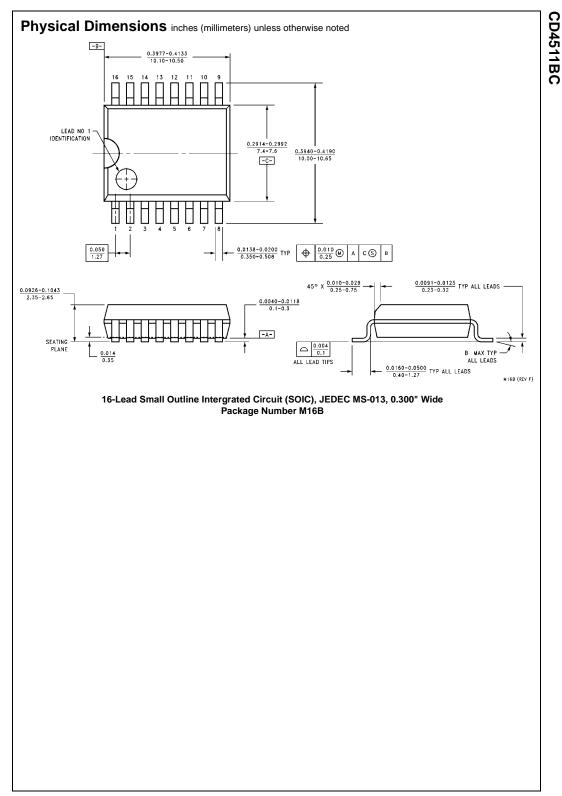

Note 1: Devices should not be connected with power on.

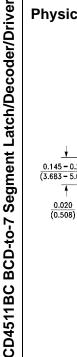
DC Electrical Characteristics

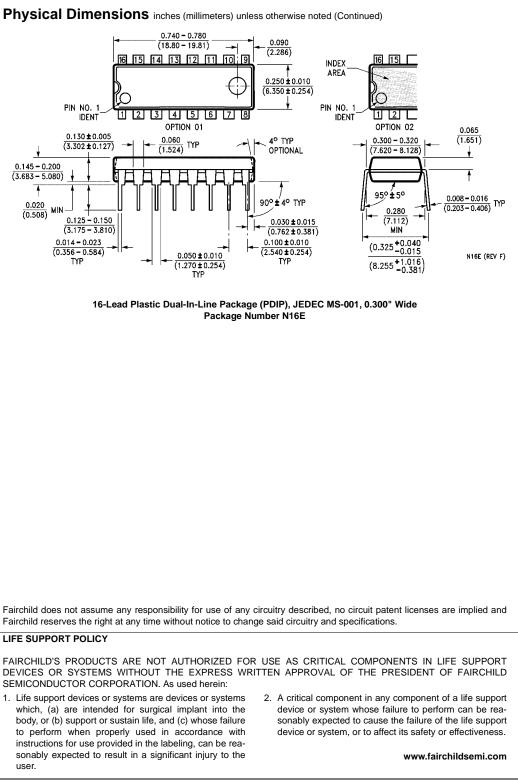
Symbol	Parameter	Conditions	−55°C			+25°C	+125°C		Units	
Symbol	Falameter	Conditions	Min	Max	Min	Тур	Max	Min	Max	Unit
I _{DD}	Quiescent	$V_{DD} = 5V$		5			5		150	
	Supply Current	$V_{DD} = 10V$		10			10		300	μA
		$V_{DD} = 15V$		20			20		600	
V _{OL}	Output Voltage	$V_{DD} = 5V$		0.01		0	0.01		0.05	
	Logical "0"	$V_{DD} = 10V$		0.01		0	0.01		0.05	V
	Level	$V_{DD} = 15V$		0.01		0	0.01		0.05	
V _{ОН}	Output Voltage	$V_{DD} = 5V$	4.1		4.1	4.57		4.1		
	Logical "1"	$V_{DD} = 10V$	9.1		9.1	9.58		9.1		V
	Level	$V_{DD} = 15V$	14.1		14.1	14.59		14.1		
VIL	LOW Level	$V_{DD} = 5V$, $V_{OUT} = 3.8V$ or 0.5V		1.5		2	1.5		1.5	
	Input Voltage	$V_{DD} = 10V, V_{OUT} = 8.8V \text{ or } 1.0V$		3.0		4	3.0		3.0	V
		$V_{DD} = 15V, V_{OUT} = 13.8V \text{ or } 1.5V$		4.0		6	4.0		4.0	
V _{IH}	HIGH Level	$V_{DD} = 5V, V_{OUT} = 0.5V \text{ or } 3.8V$	3.5		3.5	3		3.5		
	Input Voltage	V_{DD} = 10V, V_{OUT} = 1.0V or 8.8V	7.0		7.0	6		7.0		V
		$V_{DD} = 15V$, $V_{OUT} = 1.5V$ or 13.8V	11.0		11.0	9		11.0		
V _{ОН}	Output	$V_{DD} = 5V, I_{OH} = 0 \text{ mA}$	4.1		4.1	4.57		4.1		
	(Source) Drive	$V_{DD} = 5V$, $I_{OH} = 5 \text{ mA}$				4.24				
	Voltage	$V_{DD} = 5V$, $I_{OH} = 10$ mA	3.9		3.9	4.12		3.5		v
		$V_{DD} = 5V$, $I_{OH} = 15 \text{ mA}$				3.94				v
		$V_{DD} = 5V$, $I_{OH} = 20$ mA	3.4		3.4	3.75		3.0		
		$V_{DD} = 5V, I_{OH} = 25 \text{ mA}$				3.54				
		$V_{DD} = 10V, I_{OH} = 0 \text{ mA}$	9.1		9.1	9.58		9.1		
		$V_{DD} = 10V$, $I_{OH} = 5 \text{ mA}$				9.26				
		$V_{DD} = 10V, I_{OH} = 10 \text{ mA}$	9.0		9.0	9.17		8.6		v
		$V_{DD} = 10V, I_{OH} = 15 \text{ mA}$				9.04				v
		$V_{DD} = 10V, I_{OH} = 20 \text{ mA}$	8.6		8.6	8.9		8.2		
		$V_{DD} = 10V, I_{OH} = 25 \text{ mA}$				8.75				
		$V_{DD} = 15V, I_{OH} = 0 \text{ mA}$	14.1		14.1	9.58		14.1		
		$V_{DD} = 15V, I_{OH} = 5 \text{ mA}$				14.27				
		$V_{DD} = 15V$, $I_{OH} = 10 \text{ mA}$	14.0		14.0	14.17		13.6		v
		$V_{DD} = 15V$, $I_{OH} = 15 \text{ mA}$				14.07				v
		$V_{DD} = 15V, I_{OH} = 20 \text{ mA}$	13.6		13.6	13.95		13.2		
		$V_{DD} = 15V, I_{OH} = 25 \text{ mA}$				13.80				
I _{OL}	LOW Level	$V_{DD} = 5V, V_{OL} = 0.4V$	0.64		0.51	0.88		0.36		
	Output Current	$V_{DD} = 10V, V_{OL} = 0.5V$	1.6		1.3	2.25		0.9		m
		$V_{DD} = 15V, V_{OL} = 1.5V$	4.2		3.4	8.8		2.4		
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.1		-10 ⁻⁵	-0.1		-1.0	
		$V_{DD} = 15V, V_{IN} = 15V$		0.1		10 ⁻⁵	0.1		1.0	μA


Symbol	Parameter	emperature coefficient for all value Conditions	Min	Тур	Max	Unit
C _{IN}	Input Capacitance	V _{IN} = 0	IVIIII	5.0	7.5	pF
	Output Rise Time	$V_{IN} = 0$ $V_{DD} = 5V$				рг
t _r				40	80 60	
	(Figure 1 a)	$V_{DD} = 10V$		30		ns
		$V_{DD} = 15V$		25	50	
t _f	Output Fall Time	$V_{DD} = 5V$		125	250	
	(Figure 1a)	$V_{DD} = 10V$		75	150	ns
		V _{DD} = 15V		65	130	
t _{PLH}	Turn-Off Delay Time	$V_{DD} = 5V$		640	1280	
	(Data) (Figure 1a)	$V_{DD} = 10V$		250	500	ns
		V _{DD} = 15V		175	350	
t _{PHL}	Turn-On Delay Time	$V_{DD} = 5V$		720	1440	
	(Data) (Figure 1 a)	$V_{DD} = 10V$		290	580	ns
		$V_{DD} = 15V$		195	400	
t _{PLH}	Turn-Off Delay Time	$V_{DD} = 5V$		320	640	
	(Blank) (Figure 1a)	$V_{DD} = 10V$		130	260	ns
		$V_{DD} = 15V$		100	200	
t _{PHL}	Turn-On Delay Time	$V_{DD} = 5V$		485	970	
	(Blank) (Figure 1a)	$V_{DD} = 10V$		200	400	ns
		$V_{DD} = 15V$		160	320	
t _{PLH}	Turn-Off Delay Time	$V_{DD} = 5V$		313	625	
	(Lamp Test) (Figure 1a)	$V_{DD} = 10V$		125	250	ns
		$V_{DD} = 15V$		90	180	
t _{PHL}	Turn-On Delay Time	$V_{DD} = 5V$		313	625	
	(Lamp Test) (Figure 1 a)	$V_{DD} = 10V$		125	250	ns
		$V_{DD} = 15V$		90	180	
t _{SETUP}	Setup Time	$V_{DD} = 5V$	180	90		
	(Figure 1b)	$V_{DD} = 10V$	76	38		ns
		$V_{DD} = 15V$	40	20		
t _{HOLD}	Hold Time	$V_{DD} = 5V$	0	-90		
	(Figure 1b)	$V_{DD} = 10V$	0	-38		ns
		V _{DD} = 15V	0	-20		
PWLE	Minimum Latch Enable	$V_{DD} = 5V$	520	260		
	Pulse Width (Figure 1 c)	$V_{DD} = 10V$	220	110		ns

Note 2: AC Parameters are guaranteed by DC correlated testing.


www.fairchildsemi.com





www.fairchildsemi.com

6

www.fairchildsemi.com