DATA SHEET

74HC4052; 74HCT4052 Dual 4-channel analog multiplexer, demultiplexer

Product specification

Dual 4-channel analog multiplexer, demultiplexer

FEATURES

- Wide analog input voltage range from -5 V to +5 V
- Low ON-resistance:
- 80Ω (typical) at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=4.5 \mathrm{~V}$
- 70Ω (typical) at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=6.0 \mathrm{~V}$
- 60Ω (typical) at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=9.0 \mathrm{~V}$
- Logic level translation: to enable 5 V logic to communicate with $\pm 5 \mathrm{~V}$ analog signals
- Typical "break before make" built in
- Complies with JEDEC standard no. 8-1 A
- ESD protection:
- HBM EIA/JESD22-A114-A exceeds 2000 V
- MM EIA/JESD22-A115-A exceeds 200 V.
- Specified from -40 to $+85^{\circ} \mathrm{C}$ and -40 to $+125^{\circ} \mathrm{C}$.

APPLICATIONS

- Analog multiplexing and demultiplexing
- Digital multiplexing and demultiplexing
- Signal gating.

DESCRIPTION

The 74HC4052/74HCT4052 are high-speed Si-gate CMOS devices and are pin compatible with the HEF4052B. They are specified in compliance with JEDEC standard no. 7A.

The $74 \mathrm{HC} 4052 / 74 \mathrm{HCT} 4052$ are dual 4 -channel analog multiplexers or demultiplexers with common select logic. Each multiplexer has four independent inputs/outputs (pins nY0 to nY 3) and a common input/output (pin nZ). The common channel select logics include two digital select inputs (pins S 0 and S 1) and an active LOW enable input (pin \bar{E}). When pin $\bar{E}=$ LOW, one of the four switches is selected (low-impedance ON-state) with pins S0 and S1. When pin $\bar{E}=$ HIGH, all switches are in the high-impedance OFF-state, independent of pins SO and S1.
V_{CC} and GND are the supply voltage pins for the digital control inputs (pins S0, S1, and E). The V_{Cc} to GND ranges are 2.0 to 10.0 V for 74 HC 4052 and 4.5 to 5.5 V for 74 HCT 4052 . The analog inputs/outputs (pins nY0 to $n \mathrm{Y} 3$ and nZ) can swing between V_{CC} as a positive limit and V_{EE} as a negative limit. $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$ may not exceed 10.0 V .

For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to GND (typically ground).

FUNCTION TABLE

INPUT $^{(1)}$			CHANNEL BETWEEN
$\overline{\text { E }}$	S1	S0	
L	L	L	
L	L	H	nY1 and nZ
L	H	L	nY2 and nZ
L	H	H	nY3 and nZ
H	X	X	none

Note

1. $\mathrm{H}=\mathrm{HIGH}$ voltage level

L = LOW voltage level
X = don't care.

Dual 4-channel analog multiplexer, demultiplexer

QUICK REFERENCE DATA

$\mathrm{V}_{\mathrm{EE}}=\mathrm{GND}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$.

SYMBOL	PARAMETER	CONDITIONS	TYPICAL		UNIT
			74HC4052	74HCT4052	
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	turn-on time $\overline{\mathrm{E}}$ or Sn to $\mathrm{V}_{\text {os }}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$	28	18	ns
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	turn-off time $\overline{\mathrm{E}}$ or Sn to $\mathrm{V}_{\text {os }}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$	21	13	ns
C_{1}	input capacitance		3.5	3.5	pF
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance per switch	notes 1 and 2	57	57	pF
C_{S}	maximum switch capacitance	independent (Y)	5	5	pF
		common (Z)	12	12	pF

Notes

1. $C_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\left.\mu \mathrm{W}\right)$.
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i} \times N+\Sigma\left[\left(C_{L}+C_{S}\right) \times V_{C C}{ }^{2} \times f_{o}\right]$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{C}_{\mathrm{S}}=$ maximum switch capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in Volts;
$\mathrm{N}=$ total load switching outputs;
$\Sigma\left[\left(\mathrm{C}_{\mathrm{L}}+\mathrm{C}_{\mathrm{S}}\right) \times \mathrm{V}_{\mathrm{CC}}{ }^{2} \times \mathrm{f}_{\mathrm{o}}\right]=$ sum of the outputs.
2. For 74 HC 4052 the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}

For 74 HCT 4052 the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$.

ORDERING INFORMATION

TYPE NUMBER	PACKAGE				
	TEMPERATURE RANGE	PINS	PACKAGE	MATERIAL	CODE
	-40 to $+125^{\circ} \mathrm{C}$	16	SO16	plastic	SOT109-3
74 HCT 4052 D	-40 to $+125^{\circ} \mathrm{C}$	16	SO16	plastic	SOT109-3
74 HC 4052 DB	-40 to $+125^{\circ} \mathrm{C}$	16	SSOP16	plastic	SOT338-1
74 HCT 4052 DB	-40 to $+125^{\circ} \mathrm{C}$	16	SSOP16	plastic	SOT338-1
74 HC 4052 N	-40 to $+125^{\circ} \mathrm{C}$	16	DIP16	plastic	SOT38-9
74 HCT 4052 N	-40 to $+125^{\circ} \mathrm{C}$	16	DIP16	plastic	SOT38-9
74 HC 4052 PW	-40 to $+125^{\circ} \mathrm{C}$	16	TSSOP16	plastic	SOT403-1
74 HC 4052 BQ	-40 to $+125^{\circ} \mathrm{C}$	16	DHVQFN16	plastic	SOT763-1
74 HCT 4052 BQ	-40 to $+125^{\circ} \mathrm{C}$	16	DHVQFN16	plastic	SOT763-1

Dual 4-channel analog multiplexer, demultiplexer

PINNING

PIN	SYMBOL	
1	2 YO	DESCRIPTION
2	2 Y 2	independent input or output
3	2 Z	independent input or output
4	2 Y 3	independent input or output
5	2 Y 1	independent input or output
6	$\overline{\mathrm{E}}$	enable input (active LOW)
7	$\mathrm{~V}_{\mathrm{EE}}$	negative supply voltage
8	GND	ground (0 V)
9	S 1	select logic input
10	SO	select logic input
11	1 Y 3	independent input or output
12	1 Y 0	independent input or output
13	1 Z	common input or output
14	1 Y 1	independent input or output
15	1 Y 2	independent input or output
16	$\mathrm{~V}_{\mathrm{CC}}$	positive supply voltage

Fig. 1 Pin configuration DIP16, SO16 and (T)SSOP16.

Dual 4-channel analog multiplexer demultiplexer

Fig. 3 Logic symbol.

Fig. 4 IEC logic symbol.

Fig. 5 Functional diagram.

Dual 4-channel analog multiplexer, demultiplexer

Fig. 6 Schematic diagram (one switch).

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134); voltages are referenced to $\mathrm{V}_{\mathrm{EE}}=\mathrm{GND}$ (ground $=0 \mathrm{~V}$); note 1 .

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{CC}	supply voltage		-0.5	+11.0	V
I_{IK}	input diode current	$\mathrm{V}_{\mathrm{I}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{I}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	-	± 20	mA
I_{SK}	switch diode current	$\mathrm{V}_{\mathrm{S}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{S}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	-	± 20	mA
I_{S}	switch current	$-0.5 \mathrm{~V}<\mathrm{V}_{\mathrm{S}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	-	± 25	mA
I_{EE}	V_{EE} current		-	± 20	mA
$\mathrm{I}_{\mathrm{CC}} ; \mathrm{I}_{\mathrm{GND}}$	V_{CC} or GND current		-	± 50	mA
$\mathrm{~T}_{\text {Stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	power dissipation	$\mathrm{T}_{\mathrm{amb}}=-40$ to $+125^{\circ} \mathrm{C} ;$ note	-	500	mW
P_{S}	power dissipation per switch		-	100	mW

Notes

1. To avoid drawing V_{CC} current out of pins nZ , when switch current flows in pins nYn , the voltage drop across the bidirectional switch must not exceed 0.4 V . If the switch current flows into pins nZ , no V_{CC} current will flow out of pins $n Y n$. In this case there is no limit for the voltage drop across the switch, but the voltages at pins $n Y n$ and $n Z$ may not exceed V_{CC} or V_{EE}.
2. For DIP16 packages: above $70^{\circ} \mathrm{C}$ derate linearly with $12 \mathrm{~mW} / \mathrm{K}$.

For SO16 packages: above $70^{\circ} \mathrm{C}$ derate linearly with $8 \mathrm{~mW} / \mathrm{K}$.
For SSOP16 and TSSOP16 packages: above $60^{\circ} \mathrm{C}$ derate linearly with $5.5 \mathrm{~mW} / \mathrm{K}$.
For DHVQFN16 packages: above $60^{\circ} \mathrm{C}$ derate linearly with $4.5 \mathrm{~mW} / \mathrm{K}$.

Dual 4-channel analog multiplexer, demultiplexer

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	74HC4052			74HCT4052			UNIT
			MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
$\mathrm{V}_{\text {CC }}$	supply voltage	$\begin{gathered} \hline \text { see Figs } 7 \text { and } 8 \\ V_{\mathrm{CC}}-\mathrm{GND} \\ \mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \\ \hline \end{gathered}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 10.0 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
V_{1}	input voltage		GND	-	V_{CC}	GND	-	V_{CC}	V
V_{S}	switch voltage		V_{EE}	-	V_{CC}	V_{EE}	-	V_{CC}	V
$\mathrm{T}_{\text {amb }}$	operating ambient temperature	see DC and AC characteristics per device	-40	+25	+85	-40	+25	+85	${ }^{\circ} \mathrm{C}$
			-40	-	+125	-40	-	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	input rise and fall times	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	6.0	1000	-	6.0	500	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	6.0	500	-	6.0	500	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	6.0	400	-	6.0	500	ns
		$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	-	6.0	250	-	6.0	500	ns

Fig. 7 Guaranteed operating area as a function of the supply voltages for 74 HC 4052 .

Dual 4-channel analog multiplexer, demultiplexer

DC CHARACTERISTICS

Family 74HC4052

$V_{\text {is }}$ is the input voltage at pins $n Y n$ or $n Z$, whichever is assigned as an input; $V_{o s}$ is the output voltage at pins $n Z$ or $n Y n$, whichever is assigned as an output; voltages are referenced to GND (ground $=0 \mathrm{~V}$).

SYMBOL	PARAMETER	TEST CONDITIONS			MIN.	TYP.	MAX.	UNIT
		OTHER	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	$\mathrm{V}_{\mathrm{EE}}(\mathrm{V})$				
$\mathrm{T}_{\text {amb }}=-40$ to $+85^{\circ} \mathrm{C}$; note 1								
V_{IH}	HIGH-level input voltage		2.0	-	1.5	1.2	-	V
			4.5	-	3.15	2.4	-	V
			6.0	-	4.2	3.2	-	V
			9.0	-	6.3	4.7	-	V
V_{IL}	LOW-level input voltage		2.0	-	-	0.8	0.5	V
			4.5	-	-	2.1	1.35	V
			6.0	-	-	2.8	1.8	V
			9.0	-	-	4.3	2.7	V
I_{LI}	input leakage current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND	6.0	0	-	-	± 1.0	$\mu \mathrm{A}$
			10.0	0	-	-	± 2.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	analog switch OFF-state current	$\begin{aligned} & \begin{array}{l} \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ \mathrm{V}_{\mathrm{S}} \mid=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \text {; see Fig. } 9 \\ \text { per channel } \\ \text { all channels } \end{array} \end{aligned}$	$\begin{array}{\|l\|} 10.0 \\ 10.0 \\ \hline \end{array}$	$\begin{array}{\|l} 0 \\ 0 \\ \hline \end{array}$	-	\|-	$\begin{array}{\|} \pm 1.0 \\ \pm 2.0 \\ \hline \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{I}_{\text {(ON })}$	analog switch ON-state current	$\begin{aligned} & \left\lvert\, \begin{array}{l} V_{I}=V_{I H} \text { or } V_{I L} ; \\ \left\|V_{S}\right\|=V_{C C}-V_{E E} ; \text { see Fig. } 10 \end{array}\right. \end{aligned}$	10.0	0	-	-	± 2.0	$\mu \mathrm{A}$
I_{CC}	quiescent supply current	$\begin{aligned} & \mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \\ & \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{EE}} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{oS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{EE}} \\ & \hline \end{aligned}$	6.0	0	-	-	80.0	$\mu \mathrm{A}$
			10.0	0	-	-	160.0	$\mu \mathrm{A}$

Dual 4-channel analog multiplexer, demultiplexer

SYMBOL	PARAMETER	TEST CONDITIONS			MIN.	TYP.	MAX.	UNIT
		OTHER	V_{cc} (V)	$\mathrm{V}_{\mathrm{EE}}(\mathrm{V})$				
$\mathrm{T}_{\text {amb }}=-40$ to $+125{ }^{\circ} \mathrm{C}$								
V_{IH}	HIGH-level input voltage		2.0	-	1.5	-	-	V
			4.5	-	3.15	-	-	V
			6.0	-	4.2	-	-	V
			9.0	-	6.3	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage		2.0	-	-	-	0.5	V
			4.5	-	-	-	1.35	V
			6.0	-	-	-	1.8	V
			9.0	-	-	-	2.7	V
I_{LI}	input leakage current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND	6.0	0	-	-	± 1.0	$\mu \mathrm{A}$
			10.0	0	-	-	± 2.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	analog switch OFF-state current		$\begin{aligned} & 10.0 \\ & 10.0 \\ & \hline \end{aligned}$	$\begin{array}{\|l} 0 \\ 0 \\ \hline \end{array}$	$\mid-$	-	$\begin{aligned} & \pm 1.0 \\ & \pm 2.0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
$\mathrm{I}_{\mathrm{S}(\mathrm{ON})}$	analog switch ON-state current	$\begin{aligned} & V_{I}=V_{I H} \text { or } V_{I L} ; \\ & V_{S} \mid=V_{C C}-V_{E E} \text {; see Fig. } 10 \end{aligned}$	10.0	0	-	-	± 2.0	$\mu \mathrm{A}$
ICC	quiescent supply current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND;	6.0	0	-	-	160	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{EE}}$ or $\mathrm{V}_{\mathrm{CC}} ;$ $\mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}}$ or V_{EE} $\mathrm{V}_{\text {os }}=\mathrm{V}_{\mathrm{CC}}$ or V_{EE}	10.0	0	-	-	320.0	$\mu \mathrm{A}$

Note

1. All typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Dual 4-channel analog multiplexer, demultiplexer

Family 74HCT4052

$V_{\text {is }}$ is the input voltage at pins $n Y n$ or $n Z$, whichever is assigned as an input; $V_{o s}$ is the output voltage at pins $n Z$ or $n Y n$, whichever is assigned as an output; voltages are referenced to GND (ground $=0 \mathrm{~V}$).

SYMBOL	PARAMETER	TEST CONDITIONS			MIN.	TYP.	MAX.	UNIT
		OTHER	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{V}_{\mathrm{EE}}(\mathrm{V})$				
$\mathrm{T}_{\text {amb }}=-40$ to $+85^{\circ} \mathrm{C}$; note 1								
V_{IH}	HIGH-level input voltage		4.5 to 5.5	-	2.0	1.6	-	V
VIL	LOW-level input voltage		4.5 to 5.5	-	-	1.2	0.8	V
$\mathrm{I}_{\text {LI }}$	input leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND	5.5	0	-	-	± 1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	analog switch OFF-state current		$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	-	-	$\begin{aligned} & \pm 1.0 \\ & \pm 2.0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
$\mathrm{I}_{\mathrm{S}(\mathrm{ON})}$	analog switch ON-state current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \text {; see Fig. } 10 \end{aligned}$	10.0	0	-	-	± 2.0	$\mu \mathrm{A}$
I_{Cc}	quiescent supply	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ;$	5.5	0	-	-	80.0	$\mu \mathrm{A}$
	current	$\mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{EE}}$ or V_{CC}; $\mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}}$ or V_{EE}	5.0	-5.0	-	-	160.0	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{CC}}$	additional quiescent supply current per input	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$; other inputs at V_{CC} or GND	4.5 to 5.5	0	-	45	202.5	$\mu \mathrm{A}$
$\mathrm{T}_{\mathrm{amb}}=-40$ to $+125{ }^{\circ} \mathrm{C}$								
V_{IH}	HIGH-level input voltage		4.5 to 5.5	-	2.0	-	-	V
VIL	LOW-level input voltage		4.5 to 5.5	-	-	-	0.8	V
I_{LI}	input leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND	5.5	0	-	-	± 1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	analog switch OFF-state current	$\begin{aligned} & \mathrm{V}_{I}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \mathrm{V}_{\mathrm{S}} \mid=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see Fig. } 9 \\ & \text { per channel } \\ & \text { all channels } \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	$\begin{array}{\|l} 0 \\ 0 \\ \hline \end{array}$	-	-	$\begin{array}{r} \pm 1.0 \\ \pm 2.0 \\ \hline \end{array}$	$\begin{array}{r} \mu \mathrm{A} \\ \mu \mathrm{~A} \\ \hline \end{array}$
$\mathrm{I}_{\mathrm{S}(\mathrm{ON})}$	analog switch ON-state current	$\begin{aligned} & V_{I}=V_{I H} \text { or } V_{I L} ; \\ & V_{S} \mid=V_{C C}-V_{E E} \text {; see Fig. } 10 \end{aligned}$	10.0	0	-	-	± 2.0	$\mu \mathrm{A}$
I_{CC}	quiescent supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \\ & \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{EE}} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{EE}} \\ & \hline \end{aligned}$	5.5	0	-	-	160.0	$\mu \mathrm{A}$
			5.0	-5.0	-	-	320.0	$\mu \mathrm{A}$
$\Delta \mathrm{I}_{\text {CC }}$	additional quiescent supply current per input	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$; other inputs at V_{CC} or GND	4.5 to 5.5	0	-	-	220.5	$\mu \mathrm{A}$

Note

1. All typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Dual 4-channel analog multiplexer, demultiplexer

Fig. 9 Test circuit for measuring OFF-state current.

Fig. 10 Test circuit for measuring ON-state current.

Dual 4-channel analog multiplexer, demultiplexer

Resistance Row for 74HC4052 and 74HCT4052

$V_{\text {is }}$ is the input voltage at pins $n Y n$ or $n Z$, whichever is assigned as an input; see notes 1 and 2; see Fig.11.

SYMBOL	PARAMETER	TEST CONDITIONS				MIN.	TYP.	MAX.	UNIT
		OTHER	$\mathrm{V}_{\text {cc }}$ (V)	$\mathrm{V}_{\mathrm{EE}}(\mathrm{V})$	$\mathrm{I}_{\mathrm{S}}(\mu \mathrm{A})$				
$\mathrm{T}_{\text {amb }}=-40$ to $+85^{\circ} \mathrm{C}$; note 3									
$\mathrm{R}_{\text {ON(} \text { (eak) }}$	ON-resistance (peak)	$\begin{aligned} & V_{\text {is }}=V_{C C} \text { to } V_{\text {EE }} ; \\ & V_{I}=V_{I H} \text { or } V_{I L} \end{aligned}$	2.0	0	100	-	-	-	Ω
			4.5	0	1000	-	100	225	Ω
			6.0	0	1000	-	90	200	Ω
			4.5	-4.5	1000	-	70	165	Ω
$\mathrm{R}_{\mathrm{ON} \text { (rail) }}$	ON-resistance (rail)	$\begin{aligned} & \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{EE}} ; \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	2.0	0	100	-	150	-	Ω
			4.5	0	1000	-	80	175	Ω
			6.0	0	1000	-	70	150	Ω
			4.5	-4.5	1000	-	60	130	Ω
		$\begin{aligned} & \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	2.0	0	100	-	150	-	Ω
			4.5	0	1000	-	90	200	Ω
			6.0	0	1000	-	80	175	Ω
			4.5	-4.5	1000	-	65	150	Ω
$\Delta \mathrm{R}_{\text {ON }}$	maximum ON-resistance difference between any two channels	$\begin{aligned} & V_{\text {is }}=V_{C C} \text { to } V_{\text {EE }} ; \\ & V_{I}=V_{I H} \text { or } V_{I L} \end{aligned}$	2.0	0	-	-	-	-	Ω
			4.5	0	-	-	9	-	Ω
			6.0	0	-	-	8	-	Ω
			4.5	-4.5	-	-	6	-	Ω
$\mathrm{T}_{\text {amb }}=-40$ to $+125{ }^{\circ} \mathrm{C}$									
$\mathrm{R}_{\text {ON(} \text { (peak) }}$	ON-resistance (peak)	$\begin{aligned} & \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{V}_{\mathrm{EE}} ; \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	2.0	0	100	-	-	-	Ω
			4.5	0	1000	-	-	270	Ω
			6.0	0	1000	-	-	240	Ω
			4.5	-4.5	1000	-	-	195	Ω
R ${ }_{\text {ON(rail }}$	ON-resistance (rail)	$\begin{aligned} & \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{EE}} ; \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	2.0	0	100	-	-	-	Ω
			4.5	0	1000	-	-	210	Ω
			6.0	0	1000	-	-	180	Ω
			4.5	-4.5	1000	-	-	160	Ω
		$\begin{aligned} & \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	2.0	0	100	-	-	-	Ω
			4.5	0	1000	-	-	240	Ω
			6.0	0	1000	-	-	210	Ω
			4.5	-4.5	1000	-	-	180	Ω

Notes

1. For 74 HC 4052 : $\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=2.0,4.5,6.0$ and 9.0 V ; for $74 \mathrm{HCT} 4052: \mathrm{V}_{\mathrm{CC}}-\mathrm{GND}=4.5$ and 5.5 V , $V_{C C}-V_{E E}=2.0,4.5,6.0$ and 9.0 V .
2. When supply voltages $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$ near 2.0 V the analog switch ON -resistance becomes extremely non-linear. When using a supply of 2 V , it is recommended to use these devices only for transmitting digital signals.
3. All typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Dual 4-channel analog multiplexer, demultiplexer

Fig. 11 Test circuit for measuring R_{ON}.

$\mathrm{V}_{\text {is }}=0$ to $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$
(1) $V_{C C}=4.5 \mathrm{~V}$
(2) $V_{C C}=6 \mathrm{~V}$
(3) $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}$

Fig. 12 Typical RON as a function of input voltage $\mathrm{V}_{\text {is }}$.

Dual 4-channel analog multiplexer, demultiplexer

AC CHARACTERISTICS

Type 74HC4052

$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$.

SYMBOL	PARAMETER	TEST CONDITIONS			MIN.	TYP.	MAX.	UNIT
		OTHER	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	$\mathrm{V}_{\mathrm{EE}}(\mathrm{V})$				
$\mathrm{T}_{\text {amb }}=-40$ to $+85^{\circ} \mathrm{C}$; note 1								
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $\mathrm{V}_{\text {is }}$ to $\mathrm{V}_{\text {os }}$	$\mathrm{R}_{\mathrm{L}}=\infty$; see Fig. 19	2.0	0	-	14	75	ns
			4.5	0	-	5	15	ns
			6.0	0	-	4	13	ns
			4.5	-4.5	-	4	10	ns
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	turn-on time $\overline{\mathrm{E}}$, Sn to $\mathrm{V}_{\text {os }}$	$\mathrm{R}_{\mathrm{L}}=\infty \text {; see Figs 20, }$ 22 and 21	2.0	0	-	105	405	ns
			4.5	0	-	38	81	ns
			6.0	0	-	30	69	ns
			4.5	-4.5	-	26	58	ns
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	turn-off time $\overline{\mathrm{E}}$, Sn to $\mathrm{V}_{\text {os }}$	$R_{L}=1 \mathrm{k} \Omega \text {; see Figs 20, }$ 22 and 21	2.0	0	-	74	315	ns
			4.5	0	-	27	63	ns
			6.0	0	-	22	54	ns
			4.5	-4.5	-	22	48	ns
$\mathrm{T}_{\mathrm{amb}}=-40$ to $+125{ }^{\circ} \mathrm{C}$								
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $\mathrm{V}_{\text {is }}$ to $\mathrm{V}_{\text {os }}$	$\mathrm{R}_{\mathrm{L}}=\infty$; see Fig. 19	2.0	0	-	-	90	ns
			4.5	0	-	-	18	ns
			6.0	0	-	-	15	ns
			4.5	-4.5	-	-	12	ns
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	turn-on time $\overline{\mathrm{E}}$, Sn to $\mathrm{V}_{\text {os }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty ; \text { see Figs } 20, \\ & 22 \text { and } 21 \end{aligned}$	2.0	0	-	-	490	ns
			4.5	0	-	-	98	ns
			6.0	0	-	-	83	ns
			4.5	-4.5	-	-	69	ns
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	turn-off time $\overline{\mathrm{E}}$, Sn to $\mathrm{V}_{\text {os }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text {; see Figs } 20, \\ & 22 \text { and } 21 \end{aligned}$	2.0	0	-	-	375	ns
			4.5	0	-	-	75	ns
			6.0	0	-	-	64	ns
			4.5	-4.5	-	-	57	ns

Note

1. All typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Dual 4-channel analog multiplexer,

 demultiplexerType 74HCT4052
GND $=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$.

SYMBOL	PARAMETER	TEST CONDITIONS			MIN.	TYP.	MAX.	UNIT
		OTHER	V_{cc} (V)	$\mathrm{V}_{\mathrm{EE}}(\mathrm{V})$				
$\mathrm{T}_{\text {amb }}=-40$ to $+85^{\circ} \mathrm{C}$; note 1								
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $\mathrm{V}_{\text {is }}$ to $\mathrm{V}_{\text {os }}$	$\mathrm{R}_{\mathrm{L}}=\infty$; see Fig. 19	4.5	0	-	5	15	ns
			4.5	-4.5	-	4	10	ns
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	turn-on time $\overline{\mathrm{E}}$, Sn to $\mathrm{V}_{\text {os }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text {; see Figs } 20, \\ & 22 \text { and } 21 \end{aligned}$	4.5	0	-	41	88	ns
			4.5	-4.5	-	28	60	ns
$\mathrm{t}_{\text {PHZ }} \mathrm{t}_{\text {PLZ }}$	turn-off time $\overline{\mathrm{E}}$, Sn to $\mathrm{V}_{\text {os }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text {; see Figs } 20, \\ & 22 \text { and } 21 \end{aligned}$	4.5	0	-	26	63	ns
			4.5	-4.5	-	21	48	ns
$\mathrm{T}_{\text {amb }}=-40$ to $+125{ }^{\circ} \mathrm{C}$								
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $\mathrm{V}_{\text {is }}$ to $\mathrm{V}_{\text {os }}$	$\mathrm{R}_{\mathrm{L}}=\infty$; see Fig. 19	4.5	0	-	-	18	ns
			4.5	-4.5	-	-	12	ns
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	turn-on time $\overline{\mathrm{E}}$, Sn to $\mathrm{V}_{\text {os }}$	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text {; see Figs } 20 \text {, }$ 22 and 21	4.5	0	-	-	105	ns
			4.5	-4.5	-	-	72	ns
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	turn-off time $\overline{\mathrm{E}}$, Sn to $\mathrm{V}_{\text {os }}$	$R_{L}=1 \mathrm{k} \Omega$; see Figs 20, 22 and 21	4.5	0	-	-	75	ns
			4.5	-4.5	-	-	57	ns

Note

1. All typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Dual 4-channel analog multiplexer, demultiplexer

Type 74HC4052 and 74HCT4052

Recommended conditions and typical values; $\mathrm{GND}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$. $\mathrm{V}_{\text {is }}$ is the input voltage at pins nYn or $n Z$, whichever is assigned as an input. $V_{o s}$ is the output voltage at pins $n Y n$ or $n Z$, whichever is assigned as an output.

SYMBOL	PARAMETER	TEST CONDITIONS				TYP.	UNIT
		OTHER	$\begin{gathered} V_{i s(p-p)} \\ (V) \end{gathered}$	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{V}_{\mathrm{EE}}(\mathrm{V})$		
$\mathrm{d}_{\text {sin }}$	sine-wave distortion	$\begin{aligned} & f=1 \mathrm{kHz} ; \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega ; \\ & \text { see Fig. } 13 \end{aligned}$	4.0	2.25	-2.25	0.04	\%
			8.0	4.5	-4.5	0.02	\%
		$\begin{aligned} & \mathrm{f}=10 \mathrm{kHz} ; \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega ; \\ & \text { see Fig. } 13 \end{aligned}$	4.0	2.25	-2.25	0.12	\%
			8.0	4.5	-4.5	0.06	\%
$\alpha_{\text {OFF(feedthr) }}$	switch OFF signal feed-through	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{f}=1 \mathrm{MHz} ; \\ & \text { see Figs } 14 \text { and } 15 \end{aligned}$	note 1	2.25	-2.25	-50	dB
				4.5	-4.5	-50	dB
$\alpha_{\text {ct(s) }}$	crosstalk between two switches/multiplexers	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{f}=1 \mathrm{MHz} ; \\ & \text { see Fig. } 16 \end{aligned}$	note 1	2.25	-2.25	-60	dB
				4.5	-4.5	-60	dB
$\mathrm{V}_{\mathrm{ct}(\mathrm{p}-\mathrm{p})}$	crosstalk voltage between control and any switch (peak-to-peak value)	$R_{L}=600 \Omega ; f=1 \mathrm{MHz} ; \overline{\mathrm{E}}$ or Sn , square-wave between V_{CC} and GND, $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$; see Fig. 17	-	4.5	0	110	mV
				4.5	-4.5	220	mV
$\mathrm{f}_{\text {max }}$	minimum frequency response (-3dB)	$\mathrm{R}_{\mathrm{L}}=50 \Omega$; see Figs 13 and 18	note 2	2.25	-2.25	170	MHz
				4.5	-4.5	180	MHz
C_{S}	maximum switch capacitance	independent (Y)	-	-	-	5	pF
		common (Z)	-	-	-	12	pF

Notes

1. Adjust input voltage $\mathrm{V}_{\text {is }}$ to 0 dBm level $(0 \mathrm{dBm}=1 \mathrm{~mW}$ into $600 \Omega)$.
2. Adjust input voltage $\mathrm{V}_{\text {is }}$ to 0 dBm level at $\mathrm{V}_{\text {os }}$ for $1 \mathrm{MHz}(0 \mathrm{dBm}=1 \mathrm{~mW}$ into $50 \Omega)$.

Fig. 13 Test circuit for measuring sine-wave distortion and minimum frequency response.

Dual 4-channel analog multiplexer, demultiplexer

Fig. 14 Test circuit for measuring switch OFF signal feed-through.

Test conditions: $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{GND}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{R}_{\text {source }}=1 \mathrm{k} \Omega$.
Fig. 15 Typical switch OFF signal feed-through as a function of frequency.

Fig. 16 Test circuits for measuring crosstalk between any two switches/multiplexers.

Dual 4-channel analog multiplexer, demultiplexer

Fig. 17 Test circuit for measuring crosstalk between control and any switch.

Dual 4-channel analog multiplexer, demultiplexer

AC WAVEFORMS

Fig. 19 Waveforms showing the input $\left(\mathrm{V}_{\text {is }}\right)$ to output $\left(\mathrm{V}_{\mathrm{os}}\right)$ propagation delays.

For 74 HC 4052 : $\mathrm{V}_{\mathrm{M}}=50 \%$; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}.
For 74 HCT 4052 : $\mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .
Fig. 20 Waveforms showing the turn-on and turn-off times.

Dual 4-channel analog multiplexer, demultiplexer

Fig. 22 Test circuit for measuring AC performance.

Dual 4-channel analog multiplexer, demultiplexer

PACKAGE OUTLINES

SO16: plastic small outline package; 16 leads; body width 3.9 mm ; body thickness 1.47 mm
SOT109-3

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	\mathbf{A}																
$\mathbf{m a x}$.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(\mathbf{1})}$	$\mathbf{E}^{(\mathbf{1})}$	\mathbf{e}	$\mathbf{H} \mathbf{E}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(\mathbf{1})}$	$\boldsymbol{\theta}$	
mm	1.75	0.25	1.55	0.25	0.49	0.25	10.0	4.0	1.27	6.2	1.05	1.0	0.25	0.25	0.1	0.7	
		0.10	1.40		0.36	0.19	9.8	3.8	1.2	5.8		0.4				0.3	8^{0}
inches	0.069	0.010	0.061	0.01	0.019	0.0100	0.39	0.16	0.05	0.244	0.041	0.039	0.01	0.01	0.004	0.028	
	0.055	0.014	0.0075	0.38	0.15	0.0	0.228		0.016		0.012						

Note

1. Plastic or metal protrusions of $0.15 \mathrm{~mm}(0.006 \mathrm{inch})$ maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			
SOT109-3		MS-012AC			$-98-12-23$	
$03-02-19$						

Dual 4-channel analog multiplexer, demultiplexer

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A}	$\mathbf{m a x}$.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(\mathbf{1})}$	$\mathbf{E}^{(\mathbf{1})}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(\mathbf{1})}$
mm	2	0.21	1.80	0.25	0.38	0.20	6.4	5.4	0.65	7.9	1.25	1.03	0.9	0.2	0.13	0.1	1.00	8°
		0.05	1.65		0.25	0.09	6.0	5.2	0.6	7.6		0.63	0.7			0.5	0°	

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT338-1		MO-150		\square (®)	$\begin{aligned} & \hline 9-12-27 \\ & 03-02-19 \end{aligned}$

Dual 4-channel analog multiplexer, demultiplexer

DIMENSIONS (mm dimensions are derived from the original inch dimensions)

UNIT	$\underset{\max .}{A}$	A_{1} min.	$\begin{aligned} & \mathrm{A}_{2} \\ & \max . \end{aligned}$	b	b_{1}	b_{2}	c	$D^{(1)}$	$E^{(1)}$	e	e_{1}	L	M_{E}	$\mathrm{M}_{\mathbf{H}}$	w	$\begin{gathered} Z^{(1)} \\ \max . \end{gathered}$
mm	4.32	0.38	3.56	$\begin{aligned} & 1.65 \\ & 1.40 \end{aligned}$	$\begin{aligned} & 0.51 \\ & 0.41 \end{aligned}$	$\begin{aligned} & 1.14 \\ & 0.76 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.20 \end{aligned}$	$\begin{aligned} & 19.3 \\ & 18.8 \end{aligned}$	$\begin{aligned} & 6.45 \\ & 6.24 \end{aligned}$	2.54	7.62	$\begin{aligned} & 3.81 \\ & 2.92 \end{aligned}$	$\begin{aligned} & 8.23 \\ & 7.62 \end{aligned}$	$\begin{aligned} & 9.40 \\ & 8.38 \end{aligned}$	0.254	0.76
inches	0.17	0.015	0.14	$\begin{aligned} & 0.065 \\ & 0.055 \end{aligned}$	$\begin{aligned} & 0.020 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.045 \\ & 0.030 \end{aligned}$	$\begin{aligned} & 0.014 \\ & 0.008 \end{aligned}$	$\begin{aligned} & 0.76 \\ & 0.74 \end{aligned}$	$\begin{aligned} & 0.254 \\ & 0.246 \end{aligned}$	0.1	0.3	$\begin{aligned} & 0.150 \\ & 0.115 \end{aligned}$	$\begin{aligned} & 0.324 \\ & 0.300 \end{aligned}$	$\begin{aligned} & 0.37 \\ & 0.33 \end{aligned}$	0.01	0.03

Note

1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT38-9				\oplus	$\begin{aligned} & \hline-97-07-24 \\ & 03-03-12 \end{aligned}$

Dual 4-channel analog multiplexer, demultiplexer

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(2)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$\mathrm{Z}^{(1)}$	θ
mm	1.1	$\begin{aligned} & 0.15 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.95 \\ & 0.80 \end{aligned}$	0.25	$\begin{aligned} & 0.30 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 4.9 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.3 \end{aligned}$	0.65	$\begin{aligned} & 6.6 \\ & 6.2 \end{aligned}$	1	$\begin{aligned} & 0.75 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.3 \end{aligned}$	0.2	0.13	0.1	$\begin{aligned} & 0.40 \\ & 0.06 \end{aligned}$	8° 0°

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			
SOT403-1		MO-153			-	$-99-12-27$

Dual 4-channel analog multiplexer, demultiplexer

DHVQFN16: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body $2.5 \times 3.5 \times 0.85 \mathrm{~mm}$

$\xrightarrow[\text { scale }]{0}$
DIMENSIONS (mm are the original dimensions)

UNIT	$\mathbf{A}^{(1)}$ $\mathbf{m a x}$.	$\mathbf{A}_{\mathbf{1}}$	\mathbf{b}	\mathbf{c}	$\mathbf{D}^{(\mathbf{1})}$	$\mathbf{D}_{\mathbf{h}}$	$\mathbf{E}^{(1)}$	$\mathbf{E}_{\mathbf{h}}$	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	\mathbf{L}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{y}_{\mathbf{1}}$
mm	1	0.05	0.30	0.2	3.6	2.15	2.6	1.15	0.5	2.5	0.5	0.1	0.05	0.05	0.1
	0.00	0.18	0.2	3.4	1.85	2.4	0.85	0.5	2.5	0.3	0.1				

Note

1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			
SOT763-1	$\ldots-$	MO-241	\ldots		-	

Dual 4-channel analog multiplexer, demultiplexer

74HC4052; 74HCT4052

SOLDERING

Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (document order number 9398652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In these situations reflow soldering is recommended.

Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. Driven by legislation and environmental forces the worldwide use of lead-free solder pastes is increasing.

Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 to $270^{\circ} \mathrm{C}$ depending on solder paste material. The top-surface temperature of the packages should preferably be kept:

- below $220^{\circ} \mathrm{C}$ (SnPb process) or below $245{ }^{\circ} \mathrm{C}(\mathrm{Pb}$-free process)
- for all the BGA packages
- for packages with a thickness $\geq 2.5 \mathrm{~mm}$
- for packages with a thickness < 2.5 mm and a volume $\geq 350 \mathrm{~mm}^{3}$ so called thick/large packages.
- below $235^{\circ} \mathrm{C}$ (SnPb process) or below $260^{\circ} \mathrm{C}$ (Pb-free process) for packages with a thickness $<2.5 \mathrm{~mm}$ and a volume < $350 \mathrm{~mm}^{3}$ so called small/thin packages.

Moisture sensitivity precautions, as indicated on packing, must be respected at all times.

Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
- larger than or equal to 1.27 mm , the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
- smaller than 1.27 mm , the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.

The footprint must incorporate solder thieves at the downstream end.

- For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time of the leads in the wave ranges from 3 to 4 seconds at $250^{\circ} \mathrm{C}$ or $265^{\circ} \mathrm{C}$, depending on solder material applied, SnPb or Pb -free respectively.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$.

When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and $320^{\circ} \mathrm{C}$.

Dual 4-channel analog multiplexer, demultiplexer

Suitability of surface mount IC packages for wave and reflow soldering methods

PACKAGE ${ }^{(1)}$	SOLDERING METHOD	
	WAVE	REFLOW ${ }^{(2)}$
BGA, LBGA, LFBGA, SQFP, TFBGA, VFBGA	not suitable	suitable
DHVQFN, HBCC, HBGA, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, HVQFN, HVSON, SMS	not suitable ${ }^{(3)}$	suitable
PLCC ${ }^{(4)}$, SO, SOJ	suitable	suitable
LQFP, QFP, TQFP	not recommended ${ }^{(4)(5)}$	suitable
SSOP, TSSOP, VSO, VSSOP	not recommended ${ }^{(6)}$	suitable

Notes

1. For more detailed information on the BGA packages refer to the "(LF)BGA Application Note" (AN01026); order a copy from your Philips Semiconductors sales office.
2. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods".
3. These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side, the solder might be deposited on the heatsink surface.
4. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
5. Wave soldering is suitable for LQFP, TQFP and QFP packages with a pitch (e) larger than 0.8 mm ; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm .
6. Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger than 0.65 mm ; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm .

Dual 4-channel analog multiplexer, demultiplexer

DATA SHEET STATUS

LEVEL	DATA SHEET STATUS ${ }^{(1)}$	PRODUCT STATUS ${ }^{(2)(3)}$	DEFINITION
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

Notes

1. Please consult the most recently issued data sheet before initiating or completing a design.
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

DEFINITIONS

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes - Philips Semiconductors reserves the right to make changes in the products including circuits, standard cells, and/or software described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Dual 4-channel analog multiplexer, demultiplexer

NOTES

Dual 4-channel analog multiplexer, demultiplexer

NOTES

Dual 4-channel analog multiplexer, demultiplexer

NOTES

Philips Semiconductors - a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 402724825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

