May 1999

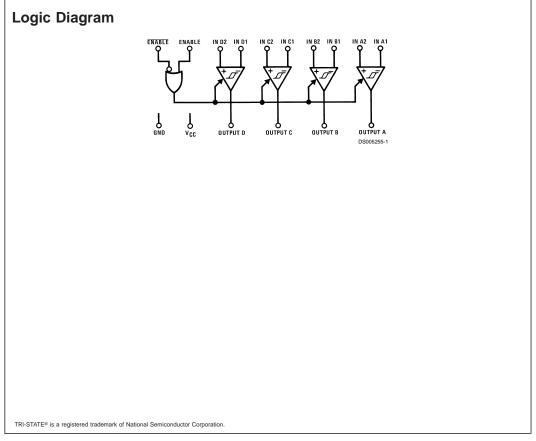
DS26LS32AC/DS26LS32C/DS26LS32M/DS26LS33MQuad Differential Line Receivers

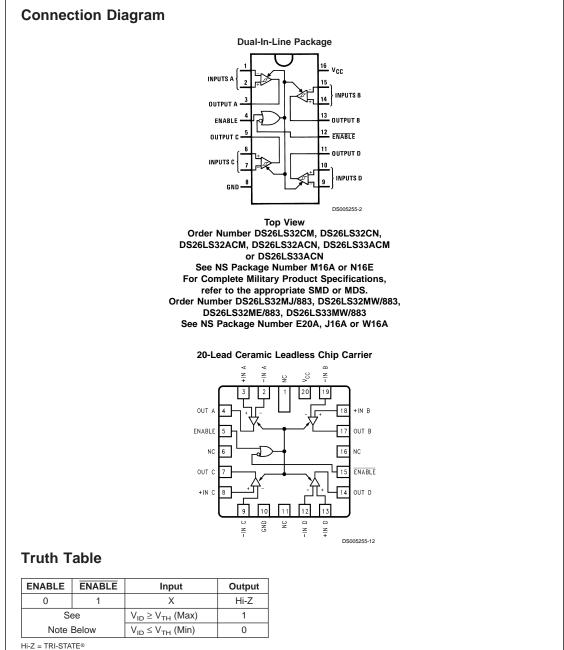
National Semiconductor

DS26LS32AC/DS26LS32C/DS26LS32M/DS26LS33M Quad Differential Line Receivers

General Description

The DS26LS32 and DS26LS32A are quad differential line receivers designed to meet the RS-422, RS-423 and Federal Standards 1020 and 1030 for balanced and unbalanced digital data transmission.


The DS26LS32 and DS26LS32A have an input sensitivity of 200 mV over the input voltage range of \pm 7V and the DS26LS33 have an input sensitivity of 500 mV over the input voltage range of \pm 15V.


The DS26LS32A differ in function from the popular DS26LS32 and DS26LS33 in that input pull-up and pull-down resistors are included which prevent output oscillation on unused channels.

Each version provides an enable and disable function common to all four receivers and features TRI-STATE [®] outputs with 8 mA sink capability. Constructed using low power Schottky processing, these devices are available over the full military and commerical operating temperature ranges.

Features

- High differential or common-mode input voltage ranges of ±7V on the DS26LS32 and DS26LS32A and ±15V on the DS26LS33
- ±0.2V sensitivity over the input voltage range on the DS26LS32 and DS26LS32A, ±0.5V sensitivity on the DS26LS33
- DS26LS32 and DS26LS32A meet all requirements of RS-422 and RS-423
- 6k minimum input impedance
- 100 mV input hysteresis on the DS26LS32 and DS26LS32A, 200 mV on the DS26LS33
- Operation from a single 5V supply
- TRI-STATE outputs, with choice of complementary output enables for receiving directly onto a data bus

Note: Input conditions may be any combination not defined for ENABLE and ENABLE .

Absolute Maximum Ratings (Note 3)

If Military/Aerospace specified devices are required, pleas . Distril

Operating	Conditions
Operating	Conditions

please contact the National Semiconductor Distributors for availability and specification		Supply Voltage DS26LS32M
Supply Voltage	7V	(MIL)
Common-Mode Range	±25V	DS26LS32C
Differential Input Voltage	±25V	DS26LS32A0
Enable Voltage	7V	(COML)
Output Sink Current	50 mA	Temperature, (
Maximum Power Dissipation (Note 1) at 25°C	;	DS26LS32M,
Cavity Package	1433 mW	(MIL)
Molded Dip Package	1362 mW	DS26LS32C
SO Package DS26LS32	1002 mW	DS26LS32A0
DS26LS32A	1051 mW	(COML)
Storage Temperature Range	–65°C to +165°C	Note 1: Derate cav package 10.9 mW/°
Lead Temperature (Soldering, 4 seconds)	260°C	Note 2: Derate SO
		0.44

	Min	Max	Units
Supply Voltage, (V _{CC})			
DS26LS32M, DS26LS33M	4.5	5.5	V
(MIL)			
DS26LS32C	4.75	5.25	V
DS26LS32AC			
(COML)			
Temperature, (T _A)			
DS26LS32M, DS26LS33M	-55	+125	°C
(MIL)			
DS26LS32C	0	+70	°C
DS26LS32AC			
(COML)			
Note 4. Devete and the sectores 0.0 m////0	-h 05°0		

avity package 9.6 mW/°C above 25°C; derate molded DIP //°C above 25°C. O Package 8.01 mW/°C for DS26LS32

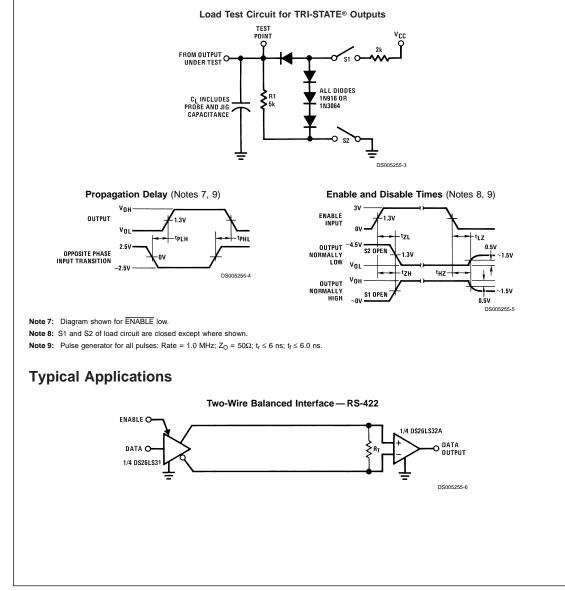
8.41 mW/°C for DS26LS32A

Electrical Characteristics (Notes 4, 5, 6)

over the operating temperature range unless otherwise specified

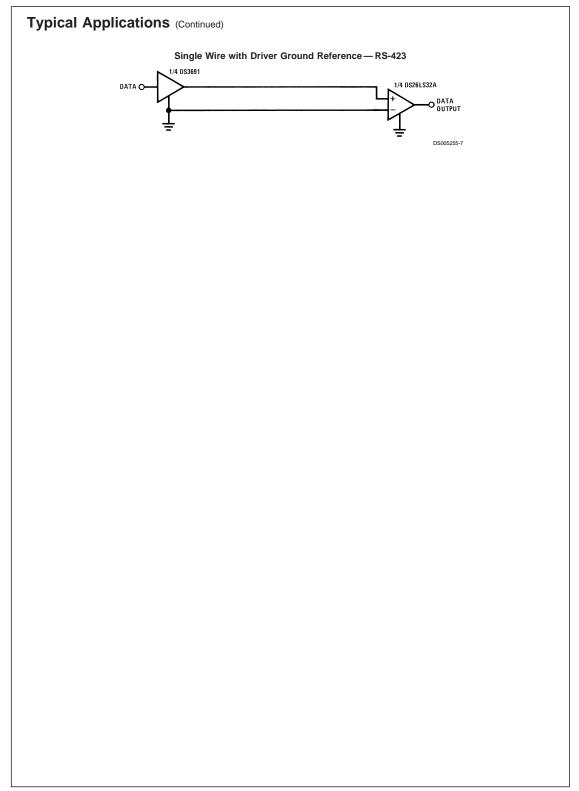
Symbol	Parameter		Conditio	ns	Min	Тур	Max	Units
V_{TH}	Differential Input	V _{OUT} = V _{OH}	DS26LS32, DS26	SLS32A, $-7V \le V_{CM} \le +7V$	-0.2	±0.07	0.2	V
	Voltage	or V _{OL}	DS26LS33, DS26	SLS33A, $-15V \le V_{CM} + 15V$	-0.5	±0.14	0.5	V
R _{IN}	Input Resistance	$-15V \le V_{CM} \le$	+15V (One Input A	C GND)	6.0	8.5		kΩ
I _{IN}	Input Current (Under	V _{IN} = 15V, Ot	her Input $-15V \le V$	_{IN} ≤ +15V			2.3	mA
	Test)	V _{IN} = -15V, C	Other Input $-15V \le 3$	$V_{IN} \le +15V$			-2.8	mA
V _{OH}	Output High Voltage	$V_{CC} = MIN, \Delta N$	/ _{IN} = 1V,	Commercial	2.7	4.2		V
		$V_{ENABLE} = 0.8$	V, I _{OH} = -440 μA	Military	2.5	4.2		V
V _{OL}	Output Low Voltage	V_{CC} = Min, ΔV	$_{\rm IN} = -1 V$,	$I_{OL} = 4 \text{ mA}$			0.4	V
		$V_{ENABLE} = 0.8$	V	I _{OL} = 8 mA			0.45	V
V _{IL}	Enable Low Voltage						0.8	V
VIH	Enable High Voltage				2.0			V
VI	Enable Clamp	$V_{\rm CC}$ = Min, I _{IN}	= -18 mA				-1.5	V
	Voltage							
lo	OFF-State (High	V _{CC} = Max		$V_{O} = 2.4V$			20	μA
	Impedance) Output			$V_{O} = 0.4V$			-20	μA
	Current							
I _{IL}	Enable Low Current	$V_{IN} = 0.4V$					-0.36	mA
I _{IH}	Enable High Current	V _{IN} = 2.7V					20	μA
I _{sc}	Output Short-Circuit	$V_{O} = 0V, V_{CC}$	= Max, ΔV_{IN} = 1V		-15		-85	mA
	Current							
I _{cc}	Power Supply	V _{CC} = Max, Al	I V _{IN} = GND,	DS26LS32, DS26LS32A		52	70	mA
	Current	Outputs Disabl	ed	DS26LS33, DS26LS33A		57	80	mA
l _i	Input High Current	V _{IN} = 5.5V					100	μA
$V_{\rm HYST}$	Input Hysteresis	$T_A = 25^{\circ}C, V_C$	_C = 5V,	DS26LS32, DS26S32A		100		mV
		$V_{CM} = 0V$		DS26LS33, DS26LS33A		200		mV

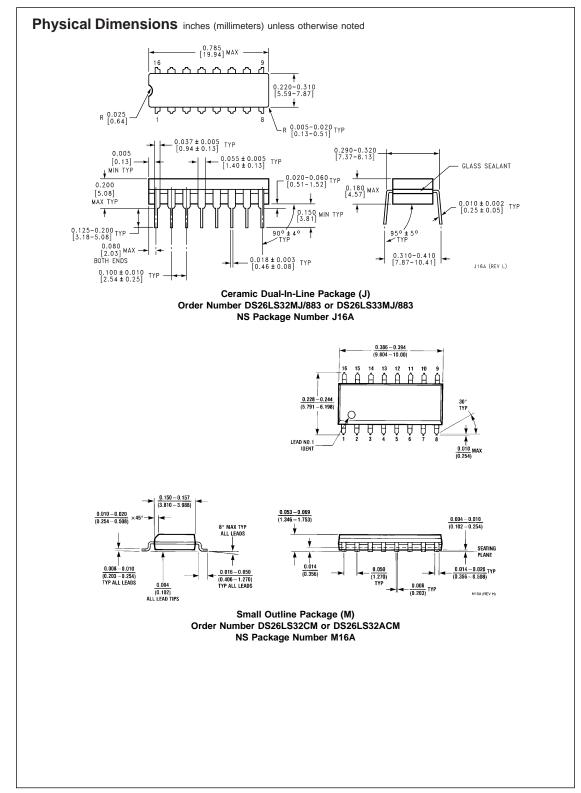
Note 3: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.


Note 4: All currents into device pins are shown as positive, all currents out of device pins are shown as negative, all voltages are referenced to ground, unless otherwise specified. All values shown as max or min are so classified on absolute value basis.

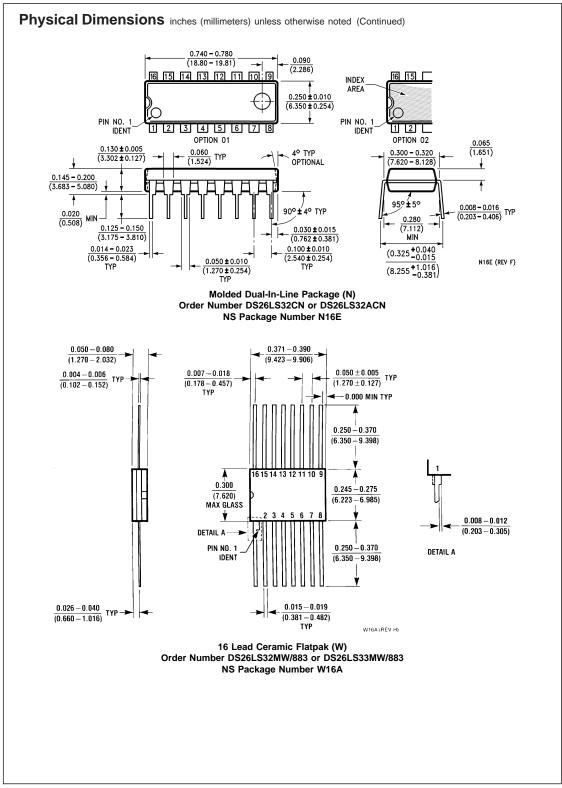
Note 5: All typical values are V_{CC} = 5V, T_A = 25°C.

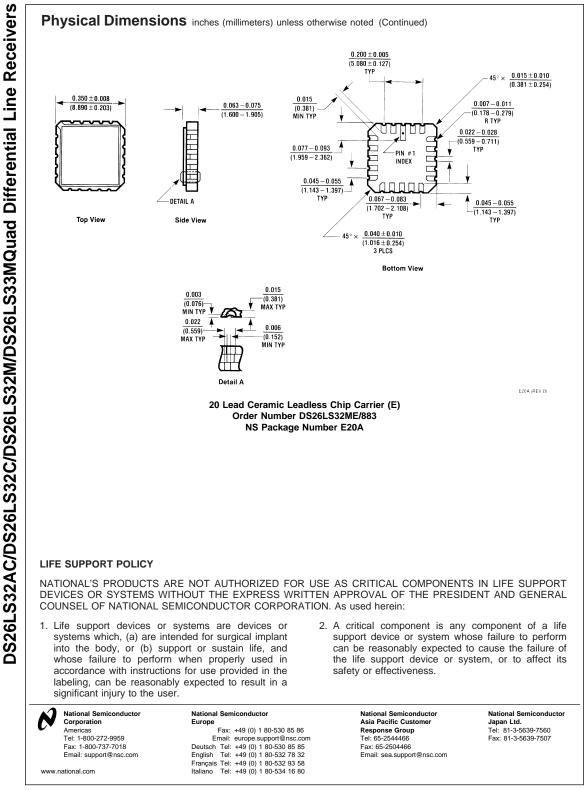
Note 6: Only one output at a time should be shorted.


Symbol	Parameter	Conditions	DS26LS32/DS26LS33			DS26LS32A/DS26LS33A			Units
			Min	Тур	Max	Min	Тур	Max	1
t _{PLH}	Input to Output	C _L = 15 pF		17	25		23	35	ns
t _{PHL}				17	25		23	35	ns
t _{LZ}	ENABLE to Output	C _L = 5 pF		20	30		15	30	ns
t _{HZ}				15	22		20	25	ns
t _{ZL}	ENABLE to Output	C _L = 15 pF		15	22		14	22	ns
t _{zH}				15	22		15	22	ns


AC Test Circuit and Switching Time Waveforms

www.national.com


.



www.national.com

6

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.