8-INPUT MULTIPLEXER WITH 3-STATE OUTPUTS

The TTL/MSI SN74LS251 is a high speed 8-Input Digital Multiplexer. It provides, in one package, the ability to select one bit of data from up to eight sources. The LS251 can be used as a universal function generator to generate any logic function of four variables. Both assertion and negation outputs are provided.

- Schottky Process for High Speed
- Multifunction Capability
- On-Chip Select Logic Decoding
- Inverting and Non-Inverting 3-State Outputs
- Input Clamp Diodes Limit High Speed Termination Effects

CONNECTION DIAGRAM DIP (TOP VIEW)

PIN NAMES		LOADING (Note a)	
		HIGH	LOW
		$0.5 \mathrm{U} . \mathrm{L}$.	$0.25 \mathrm{U} . \mathrm{L}$.
$\mathrm{S}_{0}-\mathrm{S}_{2}$	Select Inputs	$0.5 \mathrm{U} . \mathrm{L}$.	$0.25 \mathrm{U} . \mathrm{L}$.
E_{0}	Output Enable (Active LOW) Inputs	$0.5 \mathrm{U} . \mathrm{L}$.	$0.25 \mathrm{U} . \mathrm{L}$.
$\mathrm{I}_{0}-\mathrm{I}_{7}$	Multiplexer Inputs	$65 \mathrm{U} . \mathrm{L}$.	$15 \mathrm{U} . \mathrm{L}$.
Z	Multiplexer Output	$65 \mathrm{U} . \mathrm{L}$.	$15 \mathrm{U} . \mathrm{L}$.

a. 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A}$ HIGH/1.6 mA LOW.

LOGIC DIAGRAM

FUNCTIONAL DESCRIPTION

The LS251 is a logical implementation of a single pole, 8 -position switch with the switch position controlled by the state of three Select inputs, $\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$. Both assertion and negation outputs are provided. The Output Enable input (EO) is active LOW. When it is activated, the logic function provided at the output is:
$\mathrm{Z}=\mathrm{E}_{\mathrm{O}} \cdot\left(\mathrm{I}_{0} \cdot \overline{\mathrm{~S}}_{0} \cdot \overline{\mathrm{~S}}_{1} \cdot \overline{\mathrm{~S}}_{2}+\mathrm{I}_{1} \cdot \mathrm{~S}_{0} \cdot \overline{\mathrm{~S}}_{1} \cdot \overline{\mathrm{~S}}_{2}+\mathrm{I}_{2} \cdot \overline{\mathrm{~S}}_{0} \cdot \mathrm{~S}_{1} \cdot\right.$ $\underline{S_{2}}+I_{3} \cdot S_{0} \cdot \underline{S}_{1} \cdot S_{2}+I_{4} \cdot S_{0} \cdot S_{1} \cdot S_{2}+I_{5} \cdot S_{0}$ $\left.\mathrm{S}_{1} \cdot \mathrm{~S}_{2}+\mathrm{I}_{6} \cdot \mathrm{~S}_{0} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{2}+\mathrm{I}_{7} \cdot \mathrm{~S}_{0} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{2}\right)$.

When the Output Enable is HIGH, both outputs are in the high impedance (high Z) state. This feature allows multiplexer expansion by tying the outputs of up to 128 devices together. When the outputs of the 3 -state devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. The Output Enable signals should be designed to ensure there is no overlap in the active LOW portion of the enable voltage.

TRUTH TABLE

E_{0}	S_{2}	S_{1}	S_{0}	I_{0}	I_{1}	I_{2}	I_{3}	14	I_{5}	16	17	Z	Z
H	X	X	X	X	X	X	X	X	X	X	X	(Z)	(Z)
L	L	L	L	L	X	X	X	X	X	X	X	H	L
L	L	L	L	H	X	X	X	X	X	X	X	L	H
L	L	L	H	X	L	X	X	X	X	X	X	H	L
L	L	L	H	X	H	X	X	X	X	X	X	L	H
L	L	H	L	X	X	L	X	X	X	X	X	H	L
L	L	H	L	X	X	H	X	X	X	X	X	L	H
L	L	H	H	X	X	X	L	X	X	X	X	H	L
L	L	H	H	X	X	X	H	X	X	X	X	L	H
L	H	L	L	X	X	X	X	L	X	X	X	H	L
L	H	L	L	X	X	X	X	H	X	X	X	L	H
L	H	L	H	X	X	X	X	X	L	X	X	H	L
L	H	L	H	X	X	X	X	X	H	X	X	L	H
L	H	H	L	X	X	X	X	X	X	L	X	H	L
L	H	H	L	X	X	X	X	X	X	H	X	L	H
L	H	H	H	X	X	X	X	X	X	X	L	H	L
L	H	H	H	X	X	X	X	X	X	X	H	L	H

GUARANTEED OPERATING RANGES

Symbol	Parameter	Min	Typ	Max	Unit
V_{CC}	Supply Voltage	4.75	5.0	5.25	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature Range	0	25	70	${ }^{\circ} \mathrm{C}$
I_{OH}	Output Current - High			-2.6	mA
I_{OL}	Output Current - Low			24	mA

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| Symbol | Parameter | | Limits | | | Test Conditions |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.
AC CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$

Symbol	Parameter	Limits			Unit	Test Conditions	
		Min	Typ	Max			
$\begin{aligned} & \mathrm{tPLH} \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Select to Z Output		$\begin{aligned} & 20 \\ & 21 \end{aligned}$	$\begin{aligned} & 33 \\ & 33 \end{aligned}$	ns	Figure 1	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{aligned}$
$\begin{array}{\|l} \hline \text { tPLH } \\ \text { tPHL } \end{array}$	Propagation Delay, Select to Z Output		$\begin{aligned} & 29 \\ & 28 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	ns	Figure 2	
$\begin{array}{\|l\|l} \mathrm{tPLH} \\ \text { tPHL } \end{array}$	Propagation Delay, Data to Z Output		$\begin{aligned} & 10 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	ns	Figure 1	
$\begin{aligned} & \mathrm{tPLH} \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Data to Z Output		$\begin{aligned} & \hline 17 \\ & 18 \end{aligned}$	$\begin{aligned} & 28 \\ & 28 \end{aligned}$	ns	Figures 2	
$\begin{aligned} & \text { tpZH } \\ & \text { tPZL } \end{aligned}$	Output Enable Time to Z Output		$\begin{aligned} & 17 \\ & 24 \end{aligned}$	$\begin{aligned} & 27 \\ & 40 \end{aligned}$	ns	Figures 4, 5	
$\left\lvert\, \begin{aligned} & \text { tpZH } \\ & \text { tpZL } \end{aligned}\right.$	Output Enable Time to Z Output		$\begin{aligned} & \hline 30 \\ & 26 \end{aligned}$	$\begin{aligned} & \hline 45 \\ & 40 \end{aligned}$	ns	Figures 3, 5	
$\left\lvert\, \begin{aligned} & \text { tphz } \\ & \text { tpLZ } \end{aligned}\right.$	Output Disable Time to Z Output		$\begin{aligned} & \hline 37 \\ & 15 \end{aligned}$	$\begin{aligned} & 55 \\ & 25 \end{aligned}$	ns	Figures 3, 5	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$,
$\begin{aligned} & \text { tPHZ } \\ & \text { tPLZ } \\ & \hline \end{aligned}$	Output Disable Time to Z Output		$\begin{aligned} & \hline 30 \\ & 15 \end{aligned}$	$\begin{aligned} & 45 \\ & 25 \end{aligned}$	ns	Figures 4, 5	$\mathrm{R}_{\mathrm{L}}=667 \mathrm{k} \Omega$

3-STATE AC WAVEFORMS

Figure 1

Figure 3
0.5 V

Figure 2

Figure 4

AC LOAD CIRCUIT

SWITCH POSITIONS

SYMBOL	SW1	SW2
tPZH	Open	Closed
tPZL	Closed	Open
tpLZ	Closed	Closed
tpHZ	Closed	Closed

Figure 5

