

8-INPUT MULTIPLEXER WITH 3-STATE OUTPUTS

The TTL/MSI SN74LS251 is a high speed 8-Input Digital Multiplexer. It provides, in one package, the ability to select one bit of data from up to eight sources. The LS251 can be used as a universal function generator to generate any logic function of four variables. Both assertion and negation outputs are provided.

- Schottky Process for High Speed
- Multifunction Capability
- On-Chip Select Logic Decoding
- Inverting and Non-Inverting 3-State Outputs
- Input Clamp Diodes Limit High Speed Termination Effects

PIN NAMES		LOADING (Note a)			
		HIGH	LOW		
<u>S</u> 0-S2	Select Inputs	0.5 U.L.	0.25 U.L.		
E ₀	Output Enable (Active LOW) Inputs	0.5 U.L.	0.25 U.L.		
I ₀ –I ₇	Multiplexer Inputs	0.5 U.L.	0.25 U.L.		
Z	Multiplexer Output	65 U.L.	15 U.L.		
Z	Complementary Multiplexer Output	65 U.L.	15 U.L.		
NOTES:			•		

a. 1 TTL Unit Load (U.L.) = 40 μ A HIGH/1.6 mA LOW.

SN54/74LS251

8-INPUT MULTIPLEXER WITH 3-STATE OUTPUTS

LOW POWER SCHOTTKY

D SUFFIX SOIC CASE 751B-03

ORDERING INFORMATION

SN54LSXXXJ Ceramic SN74LSXXXN Plastic SN74LSXXXDW SOIC

FAST AND LS TTL DATA

FUNCTIONAL DESCRIPTION

The LS251 is a logical implementation of a single pole, 8-position switch with the switch position controlled by the state of three Select inputs, S₀, S₁, S₂. Both assertion <u>and</u> negation outputs are provided. The Output Enable input (E_O) is active LOW. When it is activated, the logic function provided at the output is:

$$\begin{split} Z = \overline{E}_O \cdot \underbrace{(I_O \cdot \overline{S}_O \cdot \overline{S}_1 \cdot \overline{S}_2 + I_1 \cdot S_0 \cdot \overline{S}_1 \cdot \overline{S}_2 + I_2 \cdot \overline{S}_0 \cdot S_1 \cdot S_2 + I_3 \cdot S_0 \cdot \underline{S}_1 \cdot S_2 + I_4 \cdot S_0 \cdot S_1 \cdot S_2 + I_5 \cdot S_0 \cdot S_1 \cdot S_2 + I_6 \cdot S_0 \cdot S_1 \cdot S_2 + I_7 \cdot S_0 \cdot S_1 \cdot S_2). \end{split}$$

When the Output Enable is HIGH, both outputs are in the high impedance (high Z) state. This feature allows multiplexer expansion by tying the outputs of up to 128 devices together. When the outputs of the 3-state devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. The Output Enable signals should be designed to ensure there is no overlap in the active LOW portion of the enable voltage.

TRUTH T	ABLE
---------	------

E ₀	S ₂	s ₁	S ₀	I ₀	I ₁	I2	lз	I4	I5	I ₆	I7	z	Z
Н	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	(Z)	(Z)
L	L	L	L	L	Х	Х	Х	Х	Х	Х	Х	н	L
L	L	L	L	н	Х	Х	Х	Х	Х	Х	Х	L	Н
L	L	L	н	Х	L	Х	Х	Х	Х	Х	Х	н	L
L	L	L	н	Х	Н	Х	Х	Х	Х	Х	Х	L	Н
L	L	Н	L	Х	Х	L	Х	Х	Х	Х	Х	н	L
L	L	Н	L	X	Х	Н	Х	Х	Х	Х	Х	L	н
L	L	Н	н	Х	Х	Х	L	Х	Х	Х	Х	н	L
L	L	Н	н	Х	Х	Х	Н	Х	Х	Х	Х	L	н
L	н	L	L	Х	Х	Х	Х	L	Х	Х	Х	н	L
L	н	L	L	Х	Х	Х	Х	Н	Х	Х	Х	L	н
L	н	L	н	Х	Х	Х	Х	Х	L	Х	Х	н	L
L	н	L	н	X	Х	Х	Х	Х	Н	Х	Х	L	н
L	н	Н	L	X	Х	Х	Х	Х	Х	L	Х	н	L
L	н	Н	L	Х	Х	Х	Х	Х	Х	Н	Х	L	Н
L	н	Н	н	Х	Х	Х	Х	Х	Х	Х	L	н	L
L	Н	Н	Н	Х	Х	Х	Х	Х	Х	Х	Н	L	Н

H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care (Z) = High impedance (Off)

GUARANTEED OPERATING RANGES

Symbol	Parameter	Min	Тур	Max	Unit
VCC	Supply Voltage	4.75	5.0	5.25	V
T _A	Operating Ambient Temperature Range	0	25	70	°C
ЮН	Output Current — High			-2.6	mA
IOL	Output Current — Low			24	mA

SN54/74LS251

			Limits					
Symbol	Parameter	Min	Тур	Max	Unit	Tes	t Conditions	
VIH	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage for All Inputs		
VIL	Input LOW Voltage			0.8	V	Guaranteed Input LOW Voltage for All Inputs		
VIK	Input Clamp Diode Voltage		-0.65	-1.5	V	$V_{CC} = MIN, I_{IN} =$	–18 mA	
VOH	Output HIGH Voltage	2.4	3.1		V	$V_{CC} = MIN, I_{OH} = MAX, V_{IN} = V_{IH}$ or V _{IL} per Truth Table		
			0.25	0.4	V	I _{OL} = 12 mA	V _{CC} = V _{CC} MIN, V _{IN} = V _{IL} or V _{IH}	
VOL	Output LOW Voltage		0.35	0.5	V	I _{OL} = 24 mA	per Truth Table	
lozн	Output Off Current HIGH			20	μΑ	V _{CC} = MAX, V _{OUT} = 2.7 V		
IOZL	Output Off Current LOW			-20	μΑ	V _{CC} = MAX, V _{OUT} = 0.4 V		
				20	μΑ	V _{CC} = MAX, V _{IN} = 2.7 V		
lΉ	Input HIGH Current			0.1	mA	V _{CC} = MAX, V _{IN} = 7.0 V		
۱ _{IL}	Input LOW Current			-0.4	mA	$V_{CC} = MAX, V_{IN} = 0.4 V$		
IOS	Short Circuit Current (Note 1)	-30		-130	mA	V _{CC} = MAX		
	Bower Supply Current			10	mA	$V_{CC} = MAX, V_E =$: 0 V	
ICC	Power Supply Current			12	mA	$V_{CC} = MAX, V_E =$: 4.5 V	

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS (T_A = 25°C, V_{CC} = 5.0 V)

		Limits					
Symbol	Parameter	Min	Тур	Max	Unit	Test	Conditions
^t PLH ^t PHL	Propagati <u>o</u> n Delay, Select to Z Output		20 21	33 33	ns	Figure 1	
^t PLH ^t PHL	Propagation Delay, Select to Z Output		29 28	45 45	ns	Figure 2	
^t PLH ^t PHL	Propag <u>ati</u> on Delay, Data to Z Output		10 9.0	15 15	ns	Figure 1	C _L = 15 pF,
^t PLH ^t PHL	Propagation Delay, Data to Z Output		17 18	28 28	ns	Figures 2	C _L = 15 pF, R _L = 2.0 kΩ
^t PZH ^t PZL	Output Enable Time to Z Output		17 24	27 40	ns	Figures 4, 5	
^t PZH ^t PZL	Output Enable Time to Z Output		30 26	45 40	ns	Figures 3, 5	
^t PHZ ^t PLZ	Output Disable Time to Z Output		37 15	55 25	ns	Figures 3, 5	C _L = 5.0 pF,
^t PHZ ^t PLZ	Output Disable Time to Z Output		30 15	45 25	ns	Figures 4, 5	R _L = 667 kΩ

SN54/74LS251

3-STATE AC WAVEFORMS

Figure 1

0.5 V

Figure 4

AC LOAD CIRCUIT

SWITCH POSITIONS

SYMBOL	SW1	SW2
^t PZH	Open	Closed
^t PZL	Closed	Open
^t PLZ	Closed	Closed
^t PHZ	Closed	Closed

Figure 5